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WHAT ARE THE GOALS?

EXAMINE METHODOLOGY

▸ Create a filter early with 
very little wasted effort. 

▸ Create a more mature 
filter later. 

▸ Try variations on the filter.
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WHAT KIND OF FILTER?

CLASSIC ATTITUDE ERROR & BIAS ESTIMATOR

▸ Filter state is attitude error and gyro bias 

▸ Gyro for propagation 

▸ Star tracker for attitude measurements

This example is kept simple to focus on 
the process, but the process works well 
when the problem is more complicated.



WHAT ARE THE DEVELOPMENT PATHS FOR DIFFERENT FILTERS?
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Integration & Testing in Simulation
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HOW ARE ALGORITHMS GENERATED?

POTENTIAL FILTER GENERATORS

*kf AUTOFILTER

Generates custom code; has run in embedded environment.

Filter architecture is emergent, 
not specified. 

Uses template for architecture.

Pieces together best “snippets” 
that fit user’s “assumptions”.

Fills in architecture with best 
components for user’s functions.

Integrates user’s functions 
as black boxes.

Manipulates fully symbolic 
user functions.

Currently supported; has flight 
heritage

Not funded; Dr. Johann Schumann 
may be able to provide code.

SELECTED

J. Whittle & J. Schumann, “Automating the Implementation of Kalman Filter Algorithms”



UKF



WHAT’S THE FILTER WRAPPER DO?

FILTER WRAPPER: PROPAGATE, RUN FILTER, & CORRECT

▸ Subtract estimated bias from gyro measurement. 

▸ Propagate the attitude. 

▸ Calculate measurement residual (innovation vector). 

▸ Run the UKF/EKF/UDKF filter. 

▸ Correct the propagated attitude and bias.



WHAT’S NEEDED FOR THE UKF?

TWO FUNCTIONS FOR THE UKF

Follows Crassidis & Markley, “Unscented Filtering 
for Spacecraft Attitude Estimation”.

f h



WHAT’S NEEDED FOR THE UKF?

TWO FUNCTIONS FOR THE UKF

▸ Propagation function 

▸ Given hypothetical attitude error, bias, and gyro noise 
for last sample, determine current attitude error and bias 
(~six lines). 

▸ Observation function 

▸ Given hypothetical attitude error and bias, determine 
current measurement error (one line).

Follows Crassidis & Markley, “Unscented Filtering 
for Spacecraft Attitude Estimation”

ẟxi,k = f(ẟxi,k-1, 𝜈i,k-1)

ẟzi,k = h(ẟxi,k)



HOW TO IMPLEMENT THE UKF?

UKF IMPLEMENTATION

▸ Sigma point propagation function name: f 

▸ Sigma point observation function name: h 

▸ Process noise covariance: Q (constant in workspace) 

▸ Measurement noise covariance: R (constant in workspace) 

▸ Measurement noise: additive (simplifies calculations) 

▸ Specify when a new measurement is available. 

▸ Output innovation covariance (for analysis).



HOW TO IMPLEMENT THE UKF?

GENERATED FILES

▸ Initialization function (sets parameters, constants) 

▸ Filter function (performs one step of the filter algorithm) 

▸ Example simulation (used to unit-test filter) 

▸ Example Monte-Carlo wrapper (used to unit-test filter 
consistency)



DOES IT WORK?

UKF UNIT TESTING

▸ Does filter appear to work? 

▸ Is the covariance matrix consistent with real errors?
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HOW’D WE DO?

UKF SIMULATION RESULTS

0 20 40 60
Time (s)

-0.2

0

0.2

0.4

At
tit

ud
e 

Er
ro

r (
~d

eg
)

MRP1
MRP2
MRP3
95% ST Boresight Errors
95% ST Cross Errors

0 10 20 30 40 50 60
Time (s)

-0.2

-0.1

0

0.1

0.2

Bi
as

 E
rro

r (
de

g/
s)

b1
b2
b3
95% Bias Errors

Single Run

MC Results

▸ Results are as expected. 

▸ Filter is consistent.



EKF



WHY TRY AN EKF?

EKF VS. UKF

▸ Embedded performance 

▸ EKFs are much faster, especially when using sequential 
scalar updates. 

▸ EKFs require less RAM.



WHAT’S NEEDED FOR THE EKF?

TWO MATRICES FOR THE EKF

Follows Lefferts, Markley, & Shuster, “Kalman 
Filtering for Spacecraft Attitude Estimation”.

F Qeff



WHAT’S NEEDED FOR THE EKF?

TWO MATRICES FOR THE EKF

▸ Propagation Jacobian Function 

▸ Produces Jacobian matrix for given state. 

▸ Easy for this example problem; more difficult for bigger 
states. 

▸ Effective process noise 

▸ Based on gyro’s angular random walk and bias random 
walk.

Follows Lefferts, Markley, & Shuster, “Kalman 
Filtering for Spacecraft Attitude Estimation”

ẟxk ≅ F ẟxk-1

Qeff = Fq Q FqT



ARE THE JACOBIAN AND PROCESS NOISE RIGHT?

QUICK VERIFICATION OF JACOBIAN AND PROCESS NOISE

▸ Can use finite-difference method with the UKF’s 
propagation function to spot check Jacobian and effective 
process noise covariance matrix — a nice advantage to 
starting with the UKF.



HOW TO IMPLEMENT THE EKF?

EKF IMPLEMENTATION

▸ Propagation function: none (filter wrapper does this) 

▸ Propagation Jacobian function: F (our custom function) 

▸ Process noise covariance: Qeff (constant in workspace) 

▸ Observation function: first 3 indices of error state (simplifies calculation) 

▸ Measurement noise covariance: R (constant in workspace) 

▸ Correction method: sequential scalar updates 

▸ Specify when a new measurement is available. 

▸ Output innovation covariance (for analysis)



HOW’D WE DO?

EKF RESULTS
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▸ Virtually identical to 
UKF.
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HOW’D WE DO?

EKF RESULTS
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UDKF



WHY TRY A UDKF?

UDKF VS. EKF

▸ Operates directly on UD factors of covariance matrix 

▸ Better stability of underlying covariance 

▸ Little additional run-time cost 

▸ Much longer to code by hand



WHAT’S NEEDED FOR THE UDKF?

NOTHING ELSE NEEDED FOR UDKF

▸ Just change an option in *kf from “Covariance” to “UDU”.

Follows Bierman, Factorization Methods for 
Discrete Sequential Estimation



HOW’D WE DO?

UDKF RESULTS

▸ Identical to EKF, 
as expected.

Single Run

MC Results
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SUMMARY

▸ Write sim and filter wrapper (necessary anyway) 

▸ Two functions → UKF (sensor trade studies, control development) 

▸ One function and one matrix → EKF (checked against UKF, runs 
on flight computer!) 

▸ A changed option → UDKF (checked against EKF, more stability 
with no additional development time) 

▸ Result: estimator available early, little wasted work, mature  
end product


