ON THE AUTOMATIC GENERATION OF RECURSIVE ATTITUDE DETERMINATION ALGORITHMS

Presented at the AAS GN&C Conference in Breckenridge, CO, on February the 7th, 2017 by Tucker McClure @ An Uncommon Lab

EXAMINE METHODOLOGY

- Create a filter early with very little wasted effort.
- Create a more mature filter later.
- Try variations on the filter.

CLASSIC ATTITUDE ERROR & BIAS ESTIMATOR

- Filter state is attitude error and gyro bias
- Gyro for propagation
- Star tracker for attitude measurements

This example is kept simple to focus on the process, but the process works well when the problem is more complicated.

UKF	EKF	UDKF		
Spacecraft Simulator				
Filter Wrapper (Attitude Propagation)				
Propagation & Observation Functions	Propagation Jacobian & Effective Process Noise			
UKF Implementation	EKF Implementation	UDKF Implementation		
Unit Testing Unit Testing		Unit Testing		
Integration & Testing in Simulation				

UKF	EKF	UDKF		
Spacecraft Simulator				
Filter Wrapper (Attitude Propagation)				
Propagation & Observation Functions	Propagation Jacobian & Effective Process Noise			
UKF Implementation	EKF Implementation	UDKF Implementation		
Unit Testing	Unit Testing	Unit Testing		
Integration & Testing in Simulation				

UKF	EKF	UDKF		
Spacecraft Simulator SUNK Cooperation				
Filter Wrapper (Attitude Propagation)				
Propagation & Observation Functions	Propagation Jacobian & Effective Process Noise			
UKF Implementation	EKF Implementation	UDKF Indepentation		
Unit Testing	Unit Testing	Unit Testing		
Integration & Testing in Simulation				

UKF	EKF	UDKF	
Spacecraft Simulator			
Filter Wrapper (Attitude Propagation)			
Propagation & Observation Functions	Propagation Jacobian MANUAL & Effective Process Noise		
UKF Implementation	EKF Implementation	UDKF Indepentation	
Unit Testing	Unit Testing	Unit Testing	
Integration & Testing in Simulation			

POTENTIAL FILTER GENERATORS

Sf	*kf	AUTOFILTER		
	Generates custom code; has run in embedded environment.			
	Filter architecture is emergent, not specified.	Uses template for architecture.		
	Pieces together best "snippets" that fit user's "assumptions".	Fills in architecture with best components for user's functions.		
	Integrates user's functions as black boxes.	Manipulates fully symbolic user functions.		
	Currently supported; has flight heritage	Not funded; Dr. Johann Schumann may be able to provide code.		

J. Whittle & J. Schumann, "Automating the Implementation of Kalman Filter Algorithms"

FILTER WRAPPER: PROPAGATE, RUN FILTER, & CORRECT

- Subtract estimated bias from gyro measurement.
- Propagate the attitude.
- Calculate measurement residual (innovation vector).
- Run the UKF/EKF/UDKF filter.
- Correct the propagated attitude and bias.

TWO FUNCTIONS FOR THE UKF

Follows Crassidis & Markley, "Unscented Filtering for Spacecraft Attitude Estimation".

TWO FUNCTIONS FOR THE UKF

Propagation function

$$\delta x_{i,k} = f(\delta x_{i,k-1}, v_{i,k-1})$$

- Given hypothetical attitude error, bias, and gyro noise for last sample, determine current attitude error and bias (~six lines).
- Observation function

$$\delta z_{i,k} = h(\delta x_{i,k})$$

Given hypothetical attitude error and bias, determine current measurement error (one line).

Follows Crassidis & Markley, "Unscented Filtering for Spacecraft Attitude Estimation"

UKF IMPLEMENTATION

- Sigma point propagation function name: f
- Sigma point observation function name: h
- Process noise covariance: Q (constant in workspace)
- Measurement noise covariance: R (constant in workspace)
- Measurement noise: additive (simplifies calculations)
- Specify when a new measurement is available.
- Output innovation covariance (for analysis).

GENERATED FILES

- Initialization function (sets parameters, constants)
- Filter function (performs one step of the filter algorithm)
- Example simulation (used to unit-test filter)
- Example Monte-Carlo wrapper (used to unit-test filter consistency)

UKF UNIT TESTING

- Does filter appear to work?
- Is the covariance matrix consistent with real errors?

UKF SIMULATION RESULTS

- Results are as expected.
- Filter is consistent.

MC Results

EKF VS. UKF

- Embedded performance
 - EKFs are much faster, especially when using sequential scalar updates.
 - EKFs require less RAM.

TWO MATRICES FOR THE EKF

Follows Lefferts, Markley, & Shuster, "Kalman Filtering for Spacecraft Attitude Estimation".

TWO MATRICES FOR THE EKF

Propagation Jacobian Function

 $\delta x_k \cong F' \delta x_{k-1}$

- Produces Jacobian matrix for given state.
- Easy for this example problem; more difficult for bigger states.
- Effective process noise

 $Q_{\rm eff} = F_q \ Q \ F_q^{\rm T}$

Based on gyro's angular random walk and bias random walk.

Follows Lefferts, Markley, & Shuster, "Kalman Filtering for Spacecraft Attitude Estimation"

QUICK VERIFICATION OF JACOBIAN AND PROCESS NOISE

Can use finite-difference method with the UKF's propagation function to spot check Jacobian and effective process noise covariance matrix – a nice advantage to starting with the UKF.

EKF IMPLEMENTATION

- Propagation function: none (filter wrapper does this)
- Propagation Jacobian function: F (our custom function)
- Process noise covariance: Q_{eff} (constant in workspace)
- Observation function: first 3 indices of error state (simplifies calculation)
- Measurement noise covariance: R (constant in workspace)
- Correction method: sequential scalar updates
- Specify when a new measurement is available.
- Output innovation covariance (for analysis)

EKF RESULTS

 Virtually identical to UKF.

MC Results

UDKF VS. EKF

- Operates directly on UD factors of covariance matrix
- Better stability of underlying covariance
- Little additional run-time cost
- Much longer to code by hand

NOTHING ELSE NEEDED FOR UDKF

Just change an option in *kf from "Covariance" to "UDU".

Follows Bierman, Factorization Methods for Discrete Sequential Estimation

6

5

4

3

2

1

0

0

Total Error Squared

UDKF RESULTS

Identical to EKF, as expected.

MC Results

20

40

Time (s)

SUMMARY

- Write sim and filter wrapper (necessary anyway)
- ► Two functions → UKF (sensor trade studies, control development)
- One function and one matrix → EKF (checked against UKF, runs on flight computer!)
- A changed option → UDKF (checked against EKF, more stability with no additional development time)
- Result: estimator available early, little wasted work, mature end product